This article for teachers suggests ideas for activities built around 10 and 2010.

During the third hour after midnight the hands on a clock point in the same direction (so one hand is over the top of the other). At what time, to the nearest second, does this happen?

Which times on a digital clock have a line of symmetry? Which look the same upside-down? You might like to try this investigation and find out!

Here is a chance to play a fractions version of the classic Countdown Game.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

A lady has a steel rod and a wooden pole and she knows the length of each. How can she measure out an 8 unit piece of pole?

Mr. Sunshine tells the children they will have 2 hours of homework. After several calculations, Harry says he hasn't got time to do this homework. Can you see where his reasoning is wrong?

If you have only four weights, where could you place them in order to balance this equaliser?

Investigate the different distances of these car journeys and find out how long they take.

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Bernard Bagnall recommends some primary school problems which use numbers from the environment around us, from clocks to house numbers.

Crosses can be drawn on number grids of various sizes. What do you notice when you add opposite ends?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

Here is a chance to play a version of the classic Countdown Game.

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Find out why these matrices are magic. Can you work out how they were made? Can you make your own Magic Matrix?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

Number problems at primary level that require careful consideration.

You have 5 darts and your target score is 44. How many different ways could you score 44?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?