Can you draw a continuous line through 16 numbers on this grid so that the total of the numbers you pass through is as high as possible?
Fill in the numbers to make the sum of each row, column and diagonal equal to 34. For an extra challenge try the huge American Flag magic square.
Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).
Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.
Arrange three 1s, three 2s and three 3s in this square so that every row, column and diagonal adds to the same total.
Susie took cherries out of a bowl by following a certain pattern. How many cherries had there been in the bowl to start with if she was left with 14 single ones?
The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?
There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?
In this problem you have to place four by four magic squares on the faces of a cube so that along each edge of the cube the numbers match.
Tell your friends that you have a strange calculator that turns numbers backwards. What secret number do you have to enter to make 141 414 turn around?
This group activity will encourage you to share calculation strategies and to think about which strategy might be the most efficient.
Investigate the different distances of these car journeys and find out how long they take.
Generate large numbers then give the values of each digit.
Number problems at primary level that require careful consideration.
The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?
Cassandra, David and Lachlan are brothers and sisters. They range in age between 1 year and 14 years. Can you figure out their exact ages from the clues?
Using 3 rods of integer lengths, none longer than 10 units and not using any rod more than once, you can measure all the lengths in whole units from 1 to 10 units. How many ways can you do this?
Mrs Morgan, the class's teacher, pinned numbers onto the backs of three children. Use the information to find out what the three numbers were.
The picture shows a lighthouse and many underwater creatures. If you know the markings on the lighthouse are 1m apart, can you work out the distances between some of the different creatures?
Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.
If each of these three shapes has a value, can you find the totals of the combinations? Perhaps you can use the shapes to make the given totals?
Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?
Investigate the different distances of these car journeys and find out how long they take.
Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.
On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?
In this 100 square, look at the green square which contains the numbers 2, 3, 12 and 13. What is the sum of the numbers that are diagonally opposite each other? What do you notice?
On a calculator, make 15 by using only the 2 key and any of the four operations keys. How many ways can you find to do it?
These alphabet bricks are painted in a special way. A is on one brick, B on two bricks, and so on. How many bricks will be painted by the time they have got to other letters of the alphabet?
Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?
Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?
Use your logical reasoning to work out how many cows and how many sheep there are in each field.
Find out why these matrices are magic. Can you work out how they were made? Can you make your own Magic Matrix?
Peter, Melanie, Amil and Jack received a total of 38 chocolate eggs. Use the information to work out how many eggs each person had.
Max and Mandy put their number lines together to make a graph. How far had each of them moved along and up from 0 to get the counter to the place marked?
Annie cut this numbered cake into 3 pieces with 3 cuts so that the numbers on each piece added to the same total. Where were the cuts and what fraction of the whole cake was each piece?
Put a number at the top of the machine and collect a number at the bottom. What do you get? Which numbers get back to themselves?
I was looking at the number plate of a car parked outside. Using my special code S208VBJ adds to 65. Can you crack my code and use it to find out what both of these number plates add up to?
Vera is shopping at a market with these coins in her purse. Which things could she give exactly the right amount for?
A lady has a steel rod and a wooden pole and she knows the length of each. How can she measure out an 8 unit piece of pole?
Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?
Where can you draw a line on a clock face so that the numbers on both sides have the same total?
Can you score 100 by throwing rings on this board? Is there more than way to do it?
These sixteen children are standing in four lines of four, one behind the other. They are each holding a card with a number on it. Can you work out the missing numbers?
If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?
In sheep talk the only letters used are B and A. A sequence of words is formed by following certain rules. What do you notice when you count the letters in each word?
On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?