Can you explain the strategy for winning this game with any target?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Delight your friends with this cunning trick! Can you explain how it works?

Here is a chance to play a version of the classic Countdown Game.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Got It game for an adult and child. How can you play so that you know you will always win?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

Crosses can be drawn on number grids of various sizes. What do you notice when you add opposite ends?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

If you have only four weights, where could you place them in order to balance this equaliser?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

This task follows on from Build it Up and takes the ideas into three dimensions!

This challenge extends the Plants investigation so now four or more children are involved.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Using 3 rods of integer lengths, none longer than 10 units and not using any rod more than once, you can measure all the lengths in whole units from 1 to 10 units. How many ways can you do this?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Try out some calculations. Are you surprised by the results?

You have 5 darts and your target score is 44. How many different ways could you score 44?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Generate large numbers then give the values of each digit.

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Arrange three 1s, three 2s and three 3s in this square so that every row, column and diagonal adds to the same total.

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Can you make square numbers by adding two prime numbers together?