Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

If you have only four weights, where could you place them in order to balance this equaliser?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Here is a chance to play a version of the classic Countdown Game.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Delight your friends with this cunning trick! Can you explain how it works?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Can you explain the strategy for winning this game with any target?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Got It game for an adult and child. How can you play so that you know you will always win?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

This task follows on from Build it Up and takes the ideas into three dimensions!

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.