Here is a chance to play a fractions version of the classic Countdown Game.

Find the values of the nine letters in the sum: FOOT + BALL = GAME

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Find out about Magic Squares in this article written for students. Why are they magic?!

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Here is a chance to play a version of the classic Countdown Game.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This challenge extends the Plants investigation so now four or more children are involved.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Delight your friends with this cunning trick! Can you explain how it works?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

If you have only four weights, where could you place them in order to balance this equaliser?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Can you explain the strategy for winning this game with any target?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

This Sudoku, based on differences. Using the one clue number can you find the solution?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

These two group activities use mathematical reasoning - one is numerical, one geometric.

In this game, you can add, subtract, multiply or divide the numbers on the dice. Which will you do so that you get to the end of the number line first?

This task follows on from Build it Up and takes the ideas into three dimensions!

Crosses can be drawn on number grids of various sizes. What do you notice when you add opposite ends?

If you wrote all the possible four digit numbers made by using each of the digits 2, 4, 5, 7 once, what would they add up to?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.