Using the statements, can you work out how many of each type of rabbit there are in these pens?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Can you arrange fifteen dominoes so that all the touching domino pieces add to 6 and the ends join up? Can you make all the joins add to 7?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Arrange three 1s, three 2s and three 3s in this square so that every row, column and diagonal adds to the same total.

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Annie cut this numbered cake into 3 pieces with 3 cuts so that the numbers on each piece added to the same total. Where were the cuts and what fraction of the whole cake was each piece?

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Using 3 rods of integer lengths, none longer than 10 units and not using any rod more than once, you can measure all the lengths in whole units from 1 to 10 units. How many ways can you do this?

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

Investigate the different distances of these car journeys and find out how long they take.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Complete these two jigsaws then put one on top of the other. What happens when you add the 'touching' numbers? What happens when you change the position of the jigsaws?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This task follows on from Build it Up and takes the ideas into three dimensions!

Generate large numbers then give the values of each digit.

Got It game for an adult and child. How can you play so that you know you will always win?

This dice train has been made using specific rules. How many different trains can you make?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?