Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

Claire thinks she has the most sports cards in her album. "I have 12 pages with 2 cards on each page", says Claire. Ross counts his cards. "No! I have 3 cards on each of my pages and there are. . . .

Fill in the numbers to make the sum of each row, column and diagonal equal to 15.

Woof is a big dog. Yap is a little dog. Emma has 16 dog biscuits to give to the two dogs. She gave Woof 4 more biscuits than Yap. How many biscuits did each dog get?

There are three baskets, a brown one, a red one and a pink one, holding a total of 10 eggs. Can you use the information given to find out how many eggs are in each basket?

There were 22 legs creeping across the web. How many flies? How many spiders?

This challenge is about finding the difference between numbers which have the same tens digit.

Sam got into an elevator. He went down five floors, up six floors, down seven floors, then got out on the second floor. On what floor did he get on?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

This big box adds something to any number that goes into it. If you know the numbers that come out, what addition might be going on in the box?

Can you find 2 butterflies to go on each flower so that the numbers on each pair of butterflies adds to the same number as the one on the flower?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

On a farm there were some hens and sheep. Altogether there were 8 heads and 22 feet. How many hens were there?

Can you arrange fifteen dominoes so that all the touching domino pieces add to 6 and the ends join up? Can you make all the joins add to 7?

On Planet Plex, there are only 6 hours in the day. Can you answer these questions about how Arog the Alien spends his day?

Annie and Ben are playing a game with a calculator. What was Annie's secret number?

Arrange the numbers 1 to 6 in each set of circles below. The sum of each side of the triangle should equal the number in its centre.

These caterpillars have 16 parts. What different shapes do they make if each part lies in the small squares of a 4 by 4 square?

Can you work out how many flowers there will be on the Amazing Splitting Plant after it has been growing for six weeks?

A lady has a steel rod and a wooden pole and she knows the length of each. How can she measure out an 8 unit piece of pole?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Investigate what happens when you add house numbers along a street in different ways.

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

I was looking at the number plate of a car parked outside. Using my special code S208VBJ adds to 65. Can you crack my code and use it to find out what both of these number plates add up to?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

Mrs Morgan, the class's teacher, pinned numbers onto the backs of three children. Use the information to find out what the three numbers were.

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

The value of the circle changes in each of the following problems. Can you discover its value in each problem?

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

Cassandra, David and Lachlan are brothers and sisters. They range in age between 1 year and 14 years. Can you figure out their exact ages from the clues?

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

Can you score 100 by throwing rings on this board? Is there more than way to do it?

Tell your friends that you have a strange calculator that turns numbers backwards. What secret number do you have to enter to make 141 414 turn around?

A game for 2 or more players. Practise your addition and subtraction with the aid of a game board and some dried peas!

Vera is shopping at a market with these coins in her purse. Which things could she give exactly the right amount for?

Which times on a digital clock have a line of symmetry? Which look the same upside-down? You might like to try this investigation and find out!

Find all the numbers that can be made by adding the dots on two dice.

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Investigate the different distances of these car journeys and find out how long they take.