What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

Peter, Melanie, Amil and Jack received a total of 38 chocolate eggs. Use the information to work out how many eggs each person had.

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

The value of the circle changes in each of the following problems. Can you discover its value in each problem?

Can you score 100 by throwing rings on this board? Is there more than way to do it?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

Use the information to work out how many gifts there are in each pile.

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

On a calculator, make 15 by using only the 2 key and any of the four operations keys. How many ways can you find to do it?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

Annie cut this numbered cake into 3 pieces with 3 cuts so that the numbers on each piece added to the same total. Where were the cuts and what fraction of the whole cake was each piece?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

There are three buckets each of which holds a maximum of 5 litres. Use the clues to work out how much liquid there is in each bucket.

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

This number has 903 digits. What is the sum of all 903 digits?

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

Put a number at the top of the machine and collect a number at the bottom. What do you get? Which numbers get back to themselves?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

In this section from a calendar, put a square box around the 1st, 2nd, 8th and 9th. Add all the pairs of numbers. What do you notice about the answers?

Start with four numbers at the corners of a square and put the total of two corners in the middle of that side. Keep going... Can you estimate what the size of the last four numbers will be?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

This group activity will encourage you to share calculation strategies and to think about which strategy might be the most efficient.

This task combines spatial awareness with addition and multiplication.

Number problems at primary level that may require resilience.

If each of these three shapes has a value, can you find the totals of the combinations? Perhaps you can use the shapes to make the given totals?

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Cassandra, David and Lachlan are brothers and sisters. They range in age between 1 year and 14 years. Can you figure out their exact ages from the clues?

This challenge combines addition, multiplication, perseverance and even proof.

Arrange three 1s, three 2s and three 3s in this square so that every row, column and diagonal adds to the same total.

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you find all the ways to get 15 at the top of this triangle of numbers?