Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

If you have only four weights, where could you place them in order to balance this equaliser?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Use the information about Sally and her brother to find out how many children there are in the Brown family.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Can you hang weights in the right place to make the equaliser balance?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

You have 5 darts and your target score is 44. How many different ways could you score 44?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

This dice train has been made using specific rules. How many different trains can you make?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?