What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

You have 5 darts and your target score is 44. How many different ways could you score 44?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This dice train has been made using specific rules. How many different trains can you make?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

This task follows on from Build it Up and takes the ideas into three dimensions!

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

A game for 2 or more players. Practise your addition and subtraction with the aid of a game board and some dried peas!

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

In this game for two players, the aim is to make a row of four coins which total one dollar.

Generate large numbers then give the values of each digit.

Arrange three 1s, three 2s and three 3s in this square so that every row, column and diagonal adds to the same total.

Investigate the different distances of these car journeys and find out how long they take.

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Using 3 rods of integer lengths, none longer than 10 units and not using any rod more than once, you can measure all the lengths in whole units from 1 to 10 units. How many ways can you do this?

Mr. Sunshine tells the children they will have 2 hours of homework. After several calculations, Harry says he hasn't got time to do this homework. Can you see where his reasoning is wrong?

These two group activities use mathematical reasoning - one is numerical, one geometric.

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Throw the dice and decide whether to double or halve the number. Will you be the first to reach the target?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?