Peter, Melanie, Amil and Jack received a total of 38 chocolate eggs. Use the information to work out how many eggs each person had.

Can you substitute numbers for the letters in these sums?

On a calculator, make 15 by using only the 2 key and any of the four operations keys. How many ways can you find to do it?

There are three buckets each of which holds a maximum of 5 litres. Use the clues to work out how much liquid there is in each bucket.

Use the information to work out how many gifts there are in each pile.

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Find another number that is one short of a square number and when you double it and add 1, the result is also a square number.

Max and Mandy put their number lines together to make a graph. How far had each of them moved along and up from 0 to get the counter to the place marked?

In this investigation, you are challenged to make mobile phone numbers which are easy to remember. What happens if you make a sequence adding 2 each time?

How many starfish could there be on the beach, and how many children, if I can see 28 arms?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

Annie cut this numbered cake into 3 pieces with 3 cuts so that the numbers on each piece added to the same total. Where were the cuts and what fraction of the whole cake was each piece?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

Arrange three 1s, three 2s and three 3s in this square so that every row, column and diagonal adds to the same total.

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Tell your friends that you have a strange calculator that turns numbers backwards. What secret number do you have to enter to make 141 414 turn around?

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

Cassandra, David and Lachlan are brothers and sisters. They range in age between 1 year and 14 years. Can you figure out their exact ages from the clues?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

Can you score 100 by throwing rings on this board? Is there more than way to do it?

Number problems at primary level that may require resilience.

Using 3 rods of integer lengths, none longer than 10 units and not using any rod more than once, you can measure all the lengths in whole units from 1 to 10 units. How many ways can you do this?

Number problems at primary level that require careful consideration.

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

If each of these three shapes has a value, can you find the totals of the combinations? Perhaps you can use the shapes to make the given totals?

This number has 903 digits. What is the sum of all 903 digits?

Put a number at the top of the machine and collect a number at the bottom. What do you get? Which numbers get back to themselves?

Investigate the different distances of these car journeys and find out how long they take.

Find the next number in this pattern: 3, 7, 19, 55 ...

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Find a great variety of ways of asking questions which make 8.

Number problems at primary level to work on with others.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

These two group activities use mathematical reasoning - one is numerical, one geometric.

Investigate the totals you get when adding numbers on the diagonal of this pattern in threes.