If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Throw the dice and decide whether to double or halve the number. Will you be the first to reach the target?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Can you hang weights in the right place to make the equaliser balance?

There are three baskets, a brown one, a red one and a pink one, holding a total of 10 eggs. Can you use the information given to find out how many eggs are in each basket?

Fill in the numbers to make the sum of each row, column and diagonal equal to 15.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Use the information about Sally and her brother to find out how many children there are in the Brown family.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

A game for 2 or more players. Practise your addition and subtraction with the aid of a game board and some dried peas!

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

These two group activities use mathematical reasoning - one is numerical, one geometric.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Arrange the numbers 1 to 6 in each set of circles below. The sum of each side of the triangle should equal the number in its centre.

In this game for two players, the aim is to make a row of four coins which total one dollar.

This challenge is about finding the difference between numbers which have the same tens digit.

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?