This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

A game for 2 or more players. Practise your addition and subtraction with the aid of a game board and some dried peas!

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

A game for 2 players. Practises subtraction or other maths operations knowledge.

This task follows on from Build it Up and takes the ideas into three dimensions!

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Can you find all the ways to get 15 at the top of this triangle of numbers?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

Arrange three 1s, three 2s and three 3s in this square so that every row, column and diagonal adds to the same total.

These two group activities use mathematical reasoning - one is numerical, one geometric.

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

If you have only four weights, where could you place them in order to balance this equaliser?

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?