Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Using 3 rods of integer lengths, none longer than 10 units and not using any rod more than once, you can measure all the lengths in whole units from 1 to 10 units. How many ways can you do this?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Here is a chance to play a version of the classic Countdown Game.

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

If you have only four weights, where could you place them in order to balance this equaliser?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

Fill in the numbers to make the sum of each row, column and diagonal equal to 34. For an extra challenge try the huge American Flag magic square.

If each of these three shapes has a value, can you find the totals of the combinations? Perhaps you can use the shapes to make the given totals?

Investigate the different distances of these car journeys and find out how long they take.

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Find a great variety of ways of asking questions which make 8.

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

Some Games That May Be Nice or Nasty for an adult and child. Use your knowledge of place value to beat your opponent.

Got It game for an adult and child. How can you play so that you know you will always win?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Can you draw a continuous line through 16 numbers on this grid so that the total of the numbers you pass through is as high as possible?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Can you score 100 by throwing rings on this board? Is there more than way to do it?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Cassandra, David and Lachlan are brothers and sisters. They range in age between 1 year and 14 years. Can you figure out their exact ages from the clues?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Tell your friends that you have a strange calculator that turns numbers backwards. What secret number do you have to enter to make 141 414 turn around?

Can you substitute numbers for the letters in these sums?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Mrs Morgan, the class's teacher, pinned numbers onto the backs of three children. Use the information to find out what the three numbers were.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

This group activity will encourage you to share calculation strategies and to think about which strategy might be the most efficient.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

This activity is best done with a whole class or in a large group. Can you match the cards? What happens when you add pairs of the numbers together?