If you have only four weights, where could you place them in order to balance this equaliser?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Can you use the numbers on the dice to reach your end of the number line before your partner beats you?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Ahmed is making rods using different numbers of cubes. Which rod is twice the length of his first rod?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Here is a chance to play a version of the classic Countdown Game.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Got It game for an adult and child. How can you play so that you know you will always win?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

A game for 2 or more players. Practise your addition and subtraction with the aid of a game board and some dried peas!

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.