Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

If you have only four weights, where could you place them in order to balance this equaliser?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Here is a chance to play a version of the classic Countdown Game.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Use the information about Sally and her brother to find out how many children there are in the Brown family.

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Can you hang weights in the right place to make the equaliser balance?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

You have 5 darts and your target score is 44. How many different ways could you score 44?

In this game, you can add, subtract, multiply or divide the numbers on the dice. Which will you do so that you get to the end of the number line first?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

A game for 2 or more players with a pack of cards. Practise your skills of addition, subtraction, multiplication and division to hit the target score.

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Use the number weights to find different ways of balancing the equaliser.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Can you find all the ways to get 15 at the top of this triangle of numbers?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

This task follows on from Build it Up and takes the ideas into three dimensions!

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!