Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Use the information about Sally and her brother to find out how many children there are in the Brown family.

Can you hang weights in the right place to make the equaliser balance?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you use the numbers on the dice to reach your end of the number line before your partner beats you?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Use the number weights to find different ways of balancing the equaliser.

Arrange the numbers 1 to 6 in each set of circles below. The sum of each side of the triangle should equal the number in its centre.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

If you have ten counters numbered 1 to 10, how many can you put into pairs that add to 10? Which ones do you have to leave out? Why?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

These two group activities use mathematical reasoning - one is numerical, one geometric.

There are three baskets, a brown one, a red one and a pink one, holding a total of 10 eggs. Can you use the information given to find out how many eggs are in each basket?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Can you arrange fifteen dominoes so that all the touching domino pieces add to 6 and the ends join up? Can you make all the joins add to 7?

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Ahmed is making rods using different numbers of cubes. Which rod is twice the length of his first rod?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

A game for 2 players. Practises subtraction or other maths operations knowledge.

Shut the Box game for an adult and child. Can you turn over the cards which match the numbers on the dice?

A game for 2 or more players. Practise your addition and subtraction with the aid of a game board and some dried peas!

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?