Find your way through the grid starting at 2 and following these operations. What number do you end on?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

These caterpillars have 16 parts. What different shapes do they make if each part lies in the small squares of a 4 by 4 square?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

Ahmed is making rods using different numbers of cubes. Which rod is twice the length of his first rod?

Use the information about Sally and her brother to find out how many children there are in the Brown family.

Start with four numbers at the corners of a square and put the total of two corners in the middle of that side. Keep going... Can you estimate what the size of the last four numbers will be?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Find all the numbers that can be made by adding the dots on two dice.

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Can you hang weights in the right place to make the equaliser balance?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?