Find your way through the grid starting at 2 and following these operations. What number do you end on?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

This dice train has been made using specific rules. How many different trains can you make?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

This task follows on from Build it Up and takes the ideas into three dimensions!

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Find all the numbers that can be made by adding the dots on two dice.

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Use the information about Sally and her brother to find out how many children there are in the Brown family.

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

These two group activities use mathematical reasoning - one is numerical, one geometric.

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?