Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Can you substitute numbers for the letters in these sums?

Number problems at primary level that require careful consideration.

This challenge extends the Plants investigation so now four or more children are involved.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Arrange three 1s, three 2s and three 3s in this square so that every row, column and diagonal adds to the same total.

Ben has five coins in his pocket. How much money might he have?

Using 3 rods of integer lengths, none longer than 10 units and not using any rod more than once, you can measure all the lengths in whole units from 1 to 10 units. How many ways can you do this?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Can you make square numbers by adding two prime numbers together?

Can you score 100 by throwing rings on this board? Is there more than way to do it?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

Cassandra, David and Lachlan are brothers and sisters. They range in age between 1 year and 14 years. Can you figure out their exact ages from the clues?

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

Tell your friends that you have a strange calculator that turns numbers backwards. What secret number do you have to enter to make 141 414 turn around?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Try out this number trick. What happens with different starting numbers? What do you notice?

These two group activities use mathematical reasoning - one is numerical, one geometric.

Find the next number in this pattern: 3, 7, 19, 55 ...

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

This task follows on from Build it Up and takes the ideas into three dimensions!

This dice train has been made using specific rules. How many different trains can you make?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Investigate the different distances of these car journeys and find out how long they take.

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

This activity is best done with a whole class or in a large group. Can you match the cards? What happens when you add pairs of the numbers together?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Number problems at primary level to work on with others.

Number problems at primary level that may require resilience.