Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!
Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?
There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?
How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?
There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?
This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!
Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?
Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.
There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.
This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?
Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.
Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?
There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.
This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!
Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.
Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?
A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.
Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?
What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?
Here is a chance to play a version of the classic Countdown Game.
Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?
This challenge focuses on finding the sum and difference of pairs of two-digit numbers.
Strike it Out game for an adult and child. Can you stop your partner from being able to go?
Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?
What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.
If you have only four weights, where could you place them in order to balance this equaliser?
Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.
There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?
Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?
A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?
Using the statements, can you work out how many of each type of rabbit there are in these pens?
This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.
This task follows on from Build it Up and takes the ideas into three dimensions!
You have 5 darts and your target score is 44. How many different ways could you score 44?
Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?
Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?
You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?
Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?
This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.
A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.
Ben’s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?
Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?
Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.
In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?
There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?
Can you use the numbers on the dice to reach your end of the number line before your partner beats you?
Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?
These two group activities use mathematical reasoning - one is numerical, one geometric.
The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?