There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Throw the dice and decide whether to double or halve the number. Will you be the first to reach the target?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Use these head, body and leg pieces to make Robot Monsters which are different heights.

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Find the sum of all three-digit numbers each of whose digits is odd.

Find your way through the grid starting at 2 and following these operations. What number do you end on?

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

This dice train has been made using specific rules. How many different trains can you make?

This task follows on from Build it Up and takes the ideas into three dimensions!

Number problems at primary level that require careful consideration.

Cassandra, David and Lachlan are brothers and sisters. They range in age between 1 year and 14 years. Can you figure out their exact ages from the clues?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Three dice are placed in a row. Find a way to turn each one so that the three numbers on top of the dice total the same as the three numbers on the front of the dice. Can you find all the ways to do. . . .

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

Claire thinks she has the most sports cards in her album. "I have 12 pages with 2 cards on each page", says Claire. Ross counts his cards. "No! I have 3 cards on each of my pages and there are. . . .

A game for 2 or more players. Practise your addition and subtraction with the aid of a game board and some dried peas!

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Tell your friends that you have a strange calculator that turns numbers backwards. What secret number do you have to enter to make 141 414 turn around?

If each of these three shapes has a value, can you find the totals of the combinations? Perhaps you can use the shapes to make the given totals?