Sometime during every hour the minute hand lies directly above the hour hand. At what time between 4 and 5 o'clock does this happen?

Anne completes a circuit around a circular track in 40 seconds. Brenda runs in the opposite direction and meets Anne every 15 seconds. How long does it take Brenda to run around the track?

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Take a look at the video and try to find a sequence of moves that will take you back to zero.

Can all unit fractions be written as the sum of two unit fractions?

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.

How much of the square is coloured blue? How will the pattern continue?

It would be nice to have a strategy for disentangling any tangled ropes...

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

Which dilutions can you make using only 10ml pipettes?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Can you see how to build a harmonic triangle? Can you work out the next two rows?

Look carefully at the video of a tangle and explain what's happening.

The Egyptians expressed all fractions as the sum of different unit fractions. The Greedy Algorithm might provide us with an efficient way of doing this.

Scientists often require solutions which are diluted to a particular concentration. In this problem, you can explore the mathematics of simple dilutions

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

A jigsaw where pieces only go together if the fractions are equivalent.

Here is a chance to play a fractions version of the classic Countdown Game.

Aisha's division and subtraction calculations both gave the same answer! Can you find some more examples?

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

My recipe is for 12 cakes - how do I change it if I want to make a different number of cakes?

Identical squares of side one unit contain some circles shaded blue. In which of the four examples is the shaded area greatest?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Two brothers were left some money, amounting to an exact number of pounds, to divide between them. DEE undertook the division. "But your heap is larger than mine!" cried DUM...

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

Imagine you were given the chance to win some money... and imagine you had nothing to lose...

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

The items in the shopping basket add and multiply to give the same amount. What could their prices be?

Find the maximum value of 1/p + 1/q + 1/r where this sum is less than 1 and p, q, and r are positive integers.

Which rational numbers cannot be written in the form x + 1/(y + 1/z) where x, y and z are integers?

A mother wants to share a sum of money by giving each of her children in turn a lump sum plus a fraction of the remainder. How can she do this in order to share the money out equally?

Problem one was solved by 70% of the pupils. Problem 2 was solved by 60% of them. Every pupil solved at least one of the problems. Nine pupils solved both problems. How many pupils took the exam?

Using some or all of the operations of addition, subtraction, multiplication and division and using the digits 3, 3, 8 and 8 each once and only once make an expression equal to 24.