Can you choose your units so that a cube has the same numerical value for it volume, surface area and total edge length?

A trapezium is divided into four triangles by its diagonals. Suppose the two triangles containing the parallel sides have areas a and b, what is the area of the trapezium?

A farmer has a field which is the shape of a trapezium as illustrated below. To increase his profits he wishes to grow two different crops. To do this he would like to divide the field into two. . . .

Four quadrants are drawn centred at the vertices of a square . Find the area of the central region bounded by the four arcs.

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

Investigate the properties of quadrilaterals which can be drawn with a circle just touching each side and another circle just touching each vertex.

Can you prove this formula for finding the area of a quadrilateral from its diagonals?

If the base of a rectangle is increased by 10% and the area is unchanged, by what percentage (exactly) is the width decreased by ?

Three squares are drawn on the sides of a triangle ABC. Their areas are respectively 18 000, 20 000 and 26 000 square centimetres. If the outer vertices of the squares are joined, three more. . . .

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

Straight lines are drawn from each corner of a square to the mid points of the opposite sides. Express the area of the octagon that is formed at the centre as a fraction of the area of the square.

Given a square ABCD of sides 10 cm, and using the corners as centres, construct four quadrants with radius 10 cm each inside the square. The four arcs intersect at P, Q, R and S. Find the. . . .

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

My measurements have got all jumbled up! Swap them around and see if you can find a combination where every measurement is valid.

Three rods of different lengths form three sides of an enclosure with right angles between them. What arrangement maximises the area

If I print this page which shape will require the more yellow ink?

Can you rank these sets of quantities in order, from smallest to largest? Can you provide convincing evidence for your rankings?

How can you change the area of a shape but keep its perimeter the same? How can you change the perimeter but keep the area the same?

Six circular discs are packed in different-shaped boxes so that the discs touch their neighbours and the sides of the box. Can you put the boxes in order according to the areas of their bases?

Analyse these beautiful biological images and attempt to rank them in size order.

What happens to the area and volume of 2D and 3D shapes when you enlarge them?

Imagine different shaped vessels being filled. Can you work out what the graphs of the water level should look like?

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

In this problem we are faced with an apparently easy area problem, but it has gone horribly wrong! What happened?

Draw two circles, each of radius 1 unit, so that each circle goes through the centre of the other one. What is the area of the overlap?

This article, written for teachers, discusses the merits of different kinds of resources: those which involve exploration and those which centre on calculation.

A white cross is placed symmetrically in a red disc with the central square of side length sqrt 2 and the arms of the cross of length 1 unit. What is the area of the disc still showing?

You have a 12 by 9 foot carpet with an 8 by 1 foot hole exactly in the middle. Cut the carpet into two pieces to make a 10 by 10 foot square carpet.

ABC and DEF are equilateral triangles of side 3 and 4 respectively. Construct an equilateral triangle whose area is the sum of the area of ABC and DEF.

An activity for high-attaining learners which involves making a new cylinder from a cardboard tube.

Investigate how this pattern of squares continues. You could measure lengths, areas and angles.

Can you draw the height-time chart as this complicated vessel fills with water?

I'm thinking of a rectangle with an area of 24. What could its perimeter be?

Can you find a general rule for finding the areas of equilateral triangles drawn on an isometric grid?

How have "Warmsnug" arrived at the prices shown on their windows? Which window has been given an incorrect price?

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

The diagonals of a trapezium divide it into four parts. Can you create a trapezium where three of those parts are equal in area?

A task which depends on members of the group noticing the needs of others and responding.

A circle with the radius of 2.2 centimetres is drawn touching the sides of a square. What area of the square is NOT covered by the circle?

Can you find rectangles where the value of the area is the same as the value of the perimeter?

Can you find the area of a parallelogram defined by two vectors?

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

Follow the instructions and you can take a rectangle, cut it into 4 pieces, discard two small triangles, put together the remaining two pieces and end up with a rectangle the same size. Try it!

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Bluey-green, white and transparent squares with a few odd bits of shapes around the perimeter. But, how many squares are there of each type in the complete circle? Study the picture and make. . . .

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

A follow-up activity to Tiles in the Garden.

Cut off three right angled isosceles triangles to produce a pentagon. With two lines, cut the pentagon into three parts which can be rearranged into another square.