Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .

Identical squares of side one unit contain some circles shaded blue. In which of the four examples is the shaded area greatest?

ABC and DEF are equilateral triangles of side 3 and 4 respectively. Construct an equilateral triangle whose area is the sum of the area of ABC and DEF.

A hallway floor is tiled and each tile is one foot square. Given that the number of tiles around the perimeter is EXACTLY half the total number of tiles, find the possible dimensions of the hallway.

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

I'm thinking of a rectangle with an area of 24. What could its perimeter be?

Determine the total shaded area of the 'kissing triangles'.

This rectangle is cut into five pieces which fit exactly into a triangular outline and also into a square outline where the triangle, the rectangle and the square have equal areas.

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

Seven small rectangular pictures have one inch wide frames. The frames are removed and the pictures are fitted together like a jigsaw to make a rectangle of length 12 inches. Find the dimensions of. . . .

How have "Warmsnug" arrived at the prices shown on their windows? Which window has been given an incorrect price?

Is it possible to remove ten unit cubes from a 3 by 3 by 3 cube made from 27 unit cubes so that the surface area of the remaining solid is the same as the surface area of the original 3 by 3 by 3. . . .

Can you find rectangles where the value of the area is the same as the value of the perimeter?

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

A tower of squares is built inside a right angled isosceles triangle. The largest square stands on the hypotenuse. What fraction of the area of the triangle is covered by the series of squares?

A circle with the radius of 2.2 centimetres is drawn touching the sides of a square. What area of the square is NOT covered by the circle?

Prove that a triangle with sides of length 5, 5 and 6 has the same area as a triangle with sides of length 5, 5 and 8. Find other pairs of non-congruent isosceles triangles which have equal areas.

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

Make an eight by eight square, the layout is the same as a chessboard. You can print out and use the square below. What is the area of the square? Divide the square in the way shown by the red dashed. . . .

What fractions of the largest circle are the two shaded regions?

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

It is possible to dissect any square into smaller squares. What is the minimum number of squares a 13 by 13 square can be dissected into?

Which is a better fit, a square peg in a round hole or a round peg in a square hole?

How can you change the area of a shape but keep its perimeter the same? How can you change the perimeter but keep the area the same?

Can you work out the area of the inner square and give an explanation of how you did it?

A task which depends on members of the group noticing the needs of others and responding.

What is the same and what is different about these circle questions? What connections can you make?

An activity for high-attaining learners which involves making a new cylinder from a cardboard tube.

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

This article, written for teachers, discusses the merits of different kinds of resources: those which involve exploration and those which centre on calculation.

You have a 12 by 9 foot carpet with an 8 by 1 foot hole exactly in the middle. Cut the carpet into two pieces to make a 10 by 10 foot square carpet.

What happens to the area and volume of 2D and 3D shapes when you enlarge them?

Follow the instructions and you can take a rectangle, cut it into 4 pieces, discard two small triangles, put together the remaining two pieces and end up with a rectangle the same size. Try it!

Six circular discs are packed in different-shaped boxes so that the discs touch their neighbours and the sides of the box. Can you put the boxes in order according to the areas of their bases?

Can you find the areas of the trapezia in this sequence?

The diagonals of a trapezium divide it into four parts. Can you create a trapezium where three of those parts are equal in area?

Points P, Q, R and S each divide the sides AB, BC, CD and DA respectively in the ratio of 2 : 1. Join the points. What is the area of the parallelogram PQRS in relation to the original rectangle?

Can you find the area of a parallelogram defined by two vectors?

A follow-up activity to Tiles in the Garden.

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Investigate how this pattern of squares continues. You could measure lengths, areas and angles.

At the corner of the cube circular arcs are drawn and the area enclosed shaded. What fraction of the surface area of the cube is shaded? Try working out the answer without recourse to pencil and. . . .

Can you find a general rule for finding the areas of equilateral triangles drawn on an isometric grid?