Look at the mathematics that is all around us - this circular window is a wonderful example.

This article for teachers gives some food for thought when teaching ideas about area.

Have a good look at these images. Can you describe what is happening? There are plenty more images like this on NRICH's Exploring Squares CD.

Grandpa was measuring a rug using yards, feet and inches. Can you help William to work out its area?

You have pitched your tent (the red triangle) on an island. Can you move it to the position shown by the purple triangle making sure you obey the rules?

How would you move the bands on the pegboard to alter these shapes?

Use the information on these cards to draw the shape that is being described.

Read about David Hilbert who proved that any polygon could be cut up into a certain number of pieces that could be put back together to form any other polygon of equal area.

How many centimetres of rope will I need to make another mat just like the one I have here?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

How can you change the area of a shape but keep its perimeter the same? How can you change the perimeter but keep the area the same?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

Can you draw a square in which the perimeter is numerically equal to the area?

What do these two triangles have in common? How are they related?

Investigate how this pattern of squares continues. You could measure lengths, areas and angles.

A follow-up activity to Tiles in the Garden.

Seven small rectangular pictures have one inch wide frames. The frames are removed and the pictures are fitted together like a jigsaw to make a rectangle of length 12 inches. Find the dimensions of. . . .

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

It is possible to dissect any square into smaller squares. What is the minimum number of squares a 13 by 13 square can be dissected into?

These rectangles have been torn. How many squares did each one have inside it before it was ripped?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

These practical challenges are all about making a 'tray' and covering it with paper.

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

What is the total area of the four outside triangles which are outlined in red in this arrangement of squares inside each other?

Points P, Q, R and S each divide the sides AB, BC, CD and DA respectively in the ratio of 2 : 1. Join the points. What is the area of the parallelogram PQRS in relation to the original rectangle?

What shape has Harry drawn on this clock face? Can you find its area? What is the largest number of square tiles that could cover this area?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

An activity for high-attaining learners which involves making a new cylinder from a cardboard tube.

Measure problems at primary level that may require resilience.

A task which depends on members of the group noticing the needs of others and responding.

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

A simple visual exploration into halving and doubling.

I cut this square into two different shapes. What can you say about the relationship between them?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

Measure problems at primary level that require careful consideration.

Measure problems for primary learners to work on with others.

Measure problems for inquiring primary learners.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

Determine the total shaded area of the 'kissing triangles'.

Investigate the different ways of cutting a perfectly circular pie into equal pieces using exactly 3 cuts. The cuts have to be along chords of the circle (which might be diameters).

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

A circle with the radius of 2.2 centimetres is drawn touching the sides of a square. What area of the square is NOT covered by the circle?