Four identical right angled triangles are drawn on the sides of a square. Two face out, two face in. Why do the four vertices marked with dots lie on one line?

Can you make sense of these three proofs of Pythagoras' Theorem?

It is obvious that we can fit four circles of diameter 1 unit in a square of side 2 without overlapping. What is the smallest square into which we can fit 3 circles of diameter 1 unit?

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

This is the second article on right-angled triangles whose edge lengths are whole numbers.

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

Semicircles are drawn on the sides of a rectangle. Prove that the sum of the areas of the four crescents is equal to the area of the rectangle.

ABC and DEF are equilateral triangles of side 3 and 4 respectively. Construct an equilateral triangle whose area is the sum of the area of ABC and DEF.

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

Prove Pythagoras' Theorem using enlargements and scale factors.

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest. . . .

What is the volume of the solid formed by rotating this right angled triangle about the hypotenuse?

What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

Medieval stonemasons used a method to construct octagons using ruler and compasses... Is the octagon regular? Proof please.

A floor is covered by a tessellation of equilateral triangles, each having three equal arcs inside it. What proportion of the area of the tessellation is shaded?

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Can you make sense of the three methods to work out the area of the kite in the square?

Two semi-circles (each of radius 1/2) touch each other, and a semi-circle of radius 1 touches both of them. Find the radius of the circle which touches all three semi-circles.

Find the area of the annulus in terms of the length of the chord which is tangent to the inner circle.

Three circular medallions fit in a rectangular box. Can you find the radius of the largest one?

What remainders do you get when square numbers are divided by 4?

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

Explain how the thirteen pieces making up the regular hexagon shown in the diagram can be re-assembled to form three smaller regular hexagons congruent to each other.

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

Which is a better fit, a square peg in a round hole or a round peg in a square hole?

If the altitude of an isosceles triangle is 8 units and the perimeter of the triangle is 32 units.... What is the area of the triangle?

Find the ratio of the outer shaded area to the inner area for a six pointed star and an eight pointed star.

Pythagoras of Samos was a Greek philosopher who lived from about 580 BC to about 500 BC. Find out about the important developments he made in mathematics, astronomy, and the theory of music.

Describe how to construct three circles which have areas in the ratio 1:2:3.

A ribbon is nailed down with a small amount of slack. What is the largest cube that can pass under the ribbon ?

Draw two circles, each of radius 1 unit, so that each circle goes through the centre of the other one. What is the area of the overlap?

Equal circles can be arranged so that each circle touches four or six others. What percentage of the plane is covered by circles in each packing pattern? ...

Triangle ABC is right angled at A and semi circles are drawn on all three sides producing two 'crescents'. Show that the sum of the areas of the two crescents equals the area of triangle ABC.

Is the sum of the squares of two opposite sloping edges of a rectangular based pyramid equal to the sum of the squares of the other two sloping edges?

A rectangular field has two posts with a ring on top of each post. There are two quarrelsome goats and plenty of ropes which you can tie to their collars. How can you secure them so they can't. . . .

A circle touches the lines OA, OB and AB where OA and OB are perpendicular. Show that the diameter of the circle is equal to the perimeter of the triangle

If a ball is rolled into the corner of a room how far is its centre from the corner?

How many right-angled triangles are there with sides that are all integers less than 100 units?

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

Cut off three right angled isosceles triangles to produce a pentagon. With two lines, cut the pentagon into three parts which can be rearranged into another square.

The area of a regular pentagon looks about twice as a big as the pentangle star drawn within it. Is it?

ABCDEFGH is a 3 by 3 by 3 cube. Point P is 1/3 along AB (that is AP : PB = 1 : 2), point Q is 1/3 along GH and point R is 1/3 along ED. What is the area of the triangle PQR?

What is the same and what is different about these circle questions? What connections can you make?

Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .

A napkin is folded so that a corner coincides with the midpoint of an opposite edge . Investigate the three triangles formed .

A dot starts at the point (1,0) and turns anticlockwise. Can you estimate the height of the dot after it has turned through 45 degrees? Can you calculate its height?