Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

Explore the factors of the numbers which are written as 10101 in different number bases. Prove that the numbers 10201, 11011 and 10101 are composite in any base.

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

Can you find any perfect numbers? Read this article to find out more...

Follow this recipe for sieving numbers and see what interesting patterns emerge.

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

Given any 3 digit number you can use the given digits and name another number which is divisible by 37 (e.g. given 628 you say 628371 is divisible by 37 because you know that 6+3 = 2+7 = 8+1 = 9). . . .

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Have you seen this way of doing multiplication ?

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Can you work out what size grid you need to read our secret message?

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

In how many ways can the number 1 000 000 be expressed as the product of three positive integers?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

The items in the shopping basket add and multiply to give the same amount. What could their prices be?

Substitution and Transposition all in one! How fiendish can these codes get?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

How many zeros are there at the end of the number which is the product of first hundred positive integers?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

How many noughts are at the end of these giant numbers?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

Find the highest power of 11 that will divide into 1000! exactly.

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?