Can you find what the last two digits of the number $4^{1999}$ are?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

How many noughts are at the end of these giant numbers?

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

Can you work out what size grid you need to read our secret message?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Take any pair of numbers, say 9 and 14. Take the larger number, fourteen, and count up in 14s. Then divide each of those values by the 9, and look at the remainders.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Find the highest power of 11 that will divide into 1000! exactly.

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Have you seen this way of doing multiplication ?

How many zeros are there at the end of the number which is the product of first hundred positive integers?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Given the products of diagonally opposite cells - can you complete this Sudoku?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

A collection of resources to support work on Factors and Multiples at Secondary level.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

The items in the shopping basket add and multiply to give the same amount. What could their prices be?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Can you find any perfect numbers? Read this article to find out more...

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

Substitution and Transposition all in one! How fiendish can these codes get?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Given the products of adjacent cells, can you complete this Sudoku?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

What is the smallest number of answers you need to reveal in order to work out the missing headers?

A game in which players take it in turns to choose a number. Can you block your opponent?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

Using your knowledge of the properties of numbers, can you fill all the squares on the board?

In how many ways can the number 1 000 000 be expressed as the product of three positive integers?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

Explore the relationship between simple linear functions and their graphs.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .