Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Can you find a way to identify times tables after they have been shifted up?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Can you find any two-digit numbers that satisfy all of these statements?

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Can you find what the last two digits of the number $4^{1999}$ are?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Is there an efficient way to work out how many factors a large number has?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

The clues for this Sudoku are the product of the numbers in adjacent squares.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

What is the smallest number of answers you need to reveal in order to work out the missing headers?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Find the highest power of 11 that will divide into 1000! exactly.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Using the digits 1 to 9, the number 4396 can be written as the product of two numbers. Can you find the factors?

A game that tests your understanding of remainders.

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Can you explain the strategy for winning this game with any target?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

Can you find any perfect numbers? Read this article to find out more...

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"