Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

Can you find what the last two digits of the number $4^{1999}$ are?

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

Can you find any perfect numbers? Read this article to find out more...

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

In how many ways can the number 1 000 000 be expressed as the product of three positive integers?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Find the highest power of 11 that will divide into 1000! exactly.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Explore the factors of the numbers which are written as 10101 in different number bases. Prove that the numbers 10201, 11011 and 10101 are composite in any base.

The items in the shopping basket add and multiply to give the same amount. What could their prices be?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

How many zeros are there at the end of the number which is the product of first hundred positive integers?

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

Substitution and Transposition all in one! How fiendish can these codes get?

Can you find any two-digit numbers that satisfy all of these statements?

Can you work out what size grid you need to read our secret message?

Explore the relationship between simple linear functions and their graphs.

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Have you seen this way of doing multiplication ?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Is there an efficient way to work out how many factors a large number has?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.