What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Can you find what the last two digits of the number $4^{1999}$ are?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Can you find any perfect numbers? Read this article to find out more...

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Have you seen this way of doing multiplication ?

Given any 3 digit number you can use the given digits and name another number which is divisible by 37 (e.g. given 628 you say 628371 is divisible by 37 because you know that 6+3 = 2+7 = 8+1 = 9). . . .

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Explore the relationship between simple linear functions and their graphs.

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

Can you find a way to identify times tables after they have been shifted up or down?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

How many zeros are there at the end of the number which is the product of first hundred positive integers?

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

What is the smallest number of answers you need to reveal in order to work out the missing headers?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

Can you find any two-digit numbers that satisfy all of these statements?

Play this game and see if you can figure out the computer's chosen number.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Find the highest power of 11 that will divide into 1000! exactly.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Given the products of adjacent cells, can you complete this Sudoku?

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

Is there an efficient way to work out how many factors a large number has?