What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Find the highest power of 11 that will divide into 1000! exactly.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

How many zeros are there at the end of the number which is the product of first hundred positive integers?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Given any 3 digit number you can use the given digits and name another number which is divisible by 37 (e.g. given 628 you say 628371 is divisible by 37 because you know that 6+3 = 2+7 = 8+1 = 9). . . .

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

Can you find a way to identify times tables after they have been shifted up?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Can you work out what size grid you need to read our secret message?

Explore the factors of the numbers which are written as 10101 in different number bases. Prove that the numbers 10201, 11011 and 10101 are composite in any base.

Can you find any two-digit numbers that satisfy all of these statements?

Can you find any perfect numbers? Read this article to find out more...

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

Is there an efficient way to work out how many factors a large number has?

Can you find what the last two digits of the number $4^{1999}$ are?

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

In how many ways can the number 1 000 000 be expressed as the product of three positive integers?

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Using your knowledge of the properties of numbers, can you fill all the squares on the board?

Take any pair of numbers, say 9 and 14. Take the larger number, fourteen, and count up in 14s. Then divide each of those values by the 9, and look at the remainders.

The clues for this Sudoku are the product of the numbers in adjacent squares.

A game that tests your understanding of remainders.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?