Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Can you explain the strategy for winning this game with any target?

In how many ways can the number 1 000 000 be expressed as the product of three positive integers?

Can you find any perfect numbers? Read this article to find out more...

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Can you work out what size grid you need to read our secret message?

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

Given any 3 digit number you can use the given digits and name another number which is divisible by 37 (e.g. given 628 you say 628371 is divisible by 37 because you know that 6+3 = 2+7 = 8+1 = 9). . . .

Substitution and Transposition all in one! How fiendish can these codes get?

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

The clues for this Sudoku are the product of the numbers in adjacent squares.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Have you seen this way of doing multiplication ?

Is there an efficient way to work out how many factors a large number has?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

Explore the factors of the numbers which are written as 10101 in different number bases. Prove that the numbers 10201, 11011 and 10101 are composite in any base.

Can you find what the last two digits of the number $4^{1999}$ are?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

A collection of resources to support work on Factors and Multiples at Secondary level.

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?