Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

Given any 3 digit number you can use the given digits and name another number which is divisible by 37 (e.g. given 628 you say 628371 is divisible by 37 because you know that 6+3 = 2+7 = 8+1 = 9). . . .

A collection of resources to support work on Factors and Multiples at Secondary level.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Can you work out what size grid you need to read our secret message?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

In how many ways can the number 1 000 000 be expressed as the product of three positive integers?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Find the highest power of 11 that will divide into 1000! exactly.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Have you seen this way of doing multiplication ?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

How many zeros are there at the end of the number which is the product of first hundred positive integers?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Explore the factors of the numbers which are written as 10101 in different number bases. Prove that the numbers 10201, 11011 and 10101 are composite in any base.

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Substitution and Transposition all in one! How fiendish can these codes get?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

How did the the rotation robot make these patterns?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Can you find any perfect numbers? Read this article to find out more...

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Can you find what the last two digits of the number $4^{1999}$ are?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?