Can you make square numbers by adding two prime numbers together?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

Number problems at primary level that may require determination.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Got It game for an adult and child. How can you play so that you know you will always win?

56 406 is the product of two consecutive numbers. What are these two numbers?

Complete the magic square using the numbers 1 to 25 once each. Each row, column and diagonal adds up to 65.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Number problems at primary level to work on with others.

An investigation that gives you the opportunity to make and justify predictions.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

There are a number of coins on a table. One quarter of the coins show heads. If I turn over 2 coins, then one third show heads. How many coins are there altogether?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

Have a go at balancing this equation. Can you find different ways of doing it?

How many different sets of numbers with at least four members can you find in the numbers in this box?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

Can you work out some different ways to balance this equation?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Are these statements always true, sometimes true or never true?

Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.