There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?
The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?
Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?
In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?
How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?
What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?
Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!
48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?
The discs for this game are kept in a flat square box with a square hole for each. Use the information to find out how many discs of each colour there are in the box.
Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.
Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.
Can you make square numbers by adding two prime numbers together?
Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.
How many different sets of numbers with at least four members can you find in the numbers in this box?
I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?
Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?
Number problems at primary level to work on with others.
Complete the magic square using the numbers 1 to 25 once each. Each row, column and diagonal adds up to 65.
Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?
Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?
Can you work out some different ways to balance this equation?
Have a go at balancing this equation. Can you find different ways of doing it?
"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?
When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?
Number problems at primary level that may require resilience.
If you have only four weights, where could you place them in order to balance this equaliser?
An investigation that gives you the opportunity to make and justify predictions.
On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?
Can you find different ways of creating paths using these paving slabs?
Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.
A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.
Factors and Multiples game for an adult and child. How can you make sure you win this game?
Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.
Ben’s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?
What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?
Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?
Given the products of adjacent cells, can you complete this Sudoku?
56 406 is the product of two consecutive numbers. What are these two numbers?
There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?
One quarter of these coins are heads but when I turn over two coins, one third are heads. How many coins are there?
A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"
An environment which simulates working with Cuisenaire rods.
Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?
Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?
Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?
Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...
Can you complete this jigsaw of the multiplication square?
Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.