Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Can you find what the last two digits of the number $4^{1999}$ are?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Can you find any perfect numbers? Read this article to find out more...

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

There are a number of coins on a table. One quarter of the coins show heads. If I turn over 2 coins, then one third show heads. How many coins are there altogether?

56 406 is the product of two consecutive numbers. What are these two numbers?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Number problems at primary level to work on with others.

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Find the highest power of 11 that will divide into 1000! exactly.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Number problems at primary level that may require resilience.

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Got It game for an adult and child. How can you play so that you know you will always win?

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

Given the products of adjacent cells, can you complete this Sudoku?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?