The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

Find the number which has 8 divisors, such that the product of the divisors is 331776.

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

Can you find what the last two digits of the number $4^{1999}$ are?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Number problems at primary level to work on with others.

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Can you find any perfect numbers? Read this article to find out more...

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Number problems at primary level that may require determination.

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Find the highest power of 11 that will divide into 1000! exactly.

56 406 is the product of two consecutive numbers. What are these two numbers?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

Can you work out some different ways to balance this equation?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

Have a go at balancing this equation. Can you find different ways of doing it?

Given the products of adjacent cells, can you complete this Sudoku?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Are these statements always true, sometimes true or never true?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?