Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

Can you find any perfect numbers? Read this article to find out more...

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Given the products of adjacent cells, can you complete this Sudoku?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

Find the highest power of 11 that will divide into 1000! exactly.

Can you find what the last two digits of the number $4^{1999}$ are?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Given the products of diagonally opposite cells - can you complete this Sudoku?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

A game that tests your understanding of remainders.

Is there an efficient way to work out how many factors a large number has?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

Have a go at balancing this equation. Can you find different ways of doing it?