Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

Can you find what the last two digits of the number $4^{1999}$ are?

Find the highest power of 11 that will divide into 1000! exactly.

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

I'm thinking of a number. My number is both a multiple of 5 and a multiple of 6. What could my number be?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Is there an efficient way to work out how many factors a large number has?

Can you find any perfect numbers? Read this article to find out more...

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Can you find any two-digit numbers that satisfy all of these statements?

Are these statements always true, sometimes true or never true?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

I added together the first 'n' positive integers and found that my answer was a 3 digit number in which all the digits were the same...

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Your vessel, the Starship Diophantus, has become damaged in deep space. Can you use your knowledge of times tables and some lightning reflexes to survive?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Given the products of adjacent cells, can you complete this Sudoku?

Katie and Will have some balloons. Will's balloon burst at exactly the same size as Katie's at the beginning of a puff. How many puffs had Will done before his balloon burst?