In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Can you complete this jigsaw of the multiplication square?

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

Use the interactivities to complete these Venn diagrams.

If you have only four weights, where could you place them in order to balance this equaliser?

An environment which simulates working with Cuisenaire rods.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Given the products of adjacent cells, can you complete this Sudoku?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Can you explain the strategy for winning this game with any target?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

How many different sets of numbers with at least four members can you find in the numbers in this box?

Can you work out some different ways to balance this equation?

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Given the products of diagonally opposite cells - can you complete this Sudoku?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Got It game for an adult and child. How can you play so that you know you will always win?

The clues for this Sudoku are the product of the numbers in adjacent squares.

A game that tests your understanding of remainders.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

Have a go at balancing this equation. Can you find different ways of doing it?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

A game in which players take it in turns to choose a number. Can you block your opponent?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

An investigation that gives you the opportunity to make and justify predictions.

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?