Can you complete this jigsaw of the multiplication square?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

A game that tests your understanding of remainders.

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Given the products of adjacent cells, can you complete this Sudoku?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

If you have only four weights, where could you place them in order to balance this equaliser?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

56 406 is the product of two consecutive numbers. What are these two numbers?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Got It game for an adult and child. How can you play so that you know you will always win?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?

Can you find a way to identify times tables after they have been shifted up?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

Can you work out some different ways to balance this equation?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Have a go at balancing this equation. Can you find different ways of doing it?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Number problems at primary level that may require determination.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

The clues for this Sudoku are the product of the numbers in adjacent squares.