Your vessel, the Starship Diophantus, has become damaged in deep space. Can you use your knowledge of times tables and some lightning reflexes to survive?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

If you have only four weights, where could you place them in order to balance this equaliser?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

56 406 is the product of two consecutive numbers. What are these two numbers?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

One quarter of these coins are heads but when I turn over two coins, one third are heads. How many coins are there?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Can you make square numbers by adding two prime numbers together?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Number problems at primary level that may require resilience.

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

Can you explain the strategy for winning this game with any target?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Can you work out some different ways to balance this equation?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

Got It game for an adult and child. How can you play so that you know you will always win?

Can you complete this jigsaw of the multiplication square?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Have a go at balancing this equation. Can you find different ways of doing it?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...