Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

56 406 is the product of two consecutive numbers. What are these two numbers?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Got It game for an adult and child. How can you play so that you know you will always win?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Number problems at primary level that may require resilience.

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Can you find any perfect numbers? Read this article to find out more...

Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Given the products of adjacent cells, can you complete this Sudoku?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Number problems at primary level to work on with others.

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Can you work out some different ways to balance this equation?

Have a go at balancing this equation. Can you find different ways of doing it?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Are these statements always true, sometimes true or never true?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.