This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

56 406 is the product of two consecutive numbers. What are these two numbers?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

One quarter of these coins are heads but when I turn over two coins, one third are heads. How many coins are there?

Katie and Will have some balloons. Will's balloon burst at exactly the same size as Katie's at the beginning of a puff. How many puffs had Will done before his balloon burst?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

Given the products of adjacent cells, can you complete this Sudoku?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Find the highest power of 11 that will divide into 1000! exactly.

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Number problems at primary level that may require resilience.

Got It game for an adult and child. How can you play so that you know you will always win?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Are these statements always true, sometimes true or never true?

Can you find any two-digit numbers that satisfy all of these statements?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Can you explain the strategy for winning this game with any target?