Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

If you have only four weights, where could you place them in order to balance this equaliser?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Can you complete this jigsaw of the multiplication square?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Use the interactivities to complete these Venn diagrams.

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

Given the products of diagonally opposite cells - can you complete this Sudoku?

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Katie and Will have some balloons. Will's balloon burst at exactly the same size as Katie's at the beginning of a puff. How many puffs had Will done before his balloon burst?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

A game in which players take it in turns to choose a number. Can you block your opponent?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Can you explain the strategy for winning this game with any target?

Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Given the products of adjacent cells, can you complete this Sudoku?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

There are a number of coins on a table. One quarter of the coins show heads. If I turn over 2 coins, then one third show heads. How many coins are there altogether?

56 406 is the product of two consecutive numbers. What are these two numbers?