A game in which players take it in turns to choose a number. Can you block your opponent?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

An environment which simulates working with Cuisenaire rods.

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Play this game and see if you can figure out the computer's chosen number.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

If you have only four weights, where could you place them in order to balance this equaliser?

Using your knowledge of the properties of numbers, can you fill all the squares on the board?

Got It game for an adult and child. How can you play so that you know you will always win?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

Can you complete this jigsaw of the multiplication square?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

A collection of resources to support work on Factors and Multiples at Secondary level.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Given the products of diagonally opposite cells - can you complete this Sudoku?

Can you explain the strategy for winning this game with any target?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

The items in the shopping basket add and multiply to give the same amount. What could their prices be?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Have a go at balancing this equation. Can you find different ways of doing it?

Can you work out some different ways to balance this equation?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?