Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

The discs for this game are kept in a flat square box with a square hole for each. Use the information to find out how many discs of each colour there are in the box.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you work out some different ways to balance this equation?

Have a go at balancing this equation. Can you find different ways of doing it?

An investigation that gives you the opportunity to make and justify predictions.

Complete the magic square using the numbers 1 to 25 once each. Each row, column and diagonal adds up to 65.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

If you have only four weights, where could you place them in order to balance this equaliser?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

The clues for this Sudoku are the product of the numbers in adjacent squares.

An environment which simulates working with Cuisenaire rods.

Given the products of adjacent cells, can you complete this Sudoku?

Got It game for an adult and child. How can you play so that you know you will always win?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Can you explain the strategy for winning this game with any target?

Can you make square numbers by adding two prime numbers together?

Given the products of diagonally opposite cells - can you complete this Sudoku?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you complete this jigsaw of the multiplication square?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Number problems at primary level to work on with others.

How many different sets of numbers with at least four members can you find in the numbers in this box?

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

Number problems at primary level that may require resilience.

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.