The clues for this Sudoku are the product of the numbers in adjacent squares.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Can you explain the strategy for winning this game with any target?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Given the products of adjacent cells, can you complete this Sudoku?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

A game that tests your understanding of remainders.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

An investigation that gives you the opportunity to make and justify predictions.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Can you find any two-digit numbers that satisfy all of these statements?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Is there an efficient way to work out how many factors a large number has?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Given the products of diagonally opposite cells - can you complete this Sudoku?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Number problems at primary level to work on with others.

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

What is the smallest number of answers you need to reveal in order to work out the missing headers?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Can you work out some different ways to balance this equation?

Have a go at balancing this equation. Can you find different ways of doing it?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Got It game for an adult and child. How can you play so that you know you will always win?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

If you have only four weights, where could you place them in order to balance this equaliser?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

Can you find a way to identify times tables after they have been shifted up?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

An environment which simulates working with Cuisenaire rods.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?