Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

Are these statements always true, sometimes true or never true?

Got It game for an adult and child. How can you play so that you know you will always win?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Substitution and Transposition all in one! How fiendish can these codes get?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

An investigation that gives you the opportunity to make and justify predictions.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

I added together some of my neighbours house numbers. Can you explain the patterns I noticed?

Can you explain the strategy for winning this game with any target?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Is there an efficient way to work out how many factors a large number has?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Can you find different ways of creating paths using these paving slabs?

Your vessel, the Starship Diophantus, has become damaged in deep space. Can you use your knowledge of times tables and some lightning reflexes to survive?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Number problems at primary level that may require resilience.

Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Find the highest power of 11 that will divide into 1000! exactly.

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

I'm thinking of a number. My number is both a multiple of 5 and a multiple of 6. What could my number be?

Can you find what the last two digits of the number $4^{1999}$ are?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?