A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Play this game and see if you can figure out the computer's chosen number.

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Factors and Multiples game for an adult and child. How can you make sure you win this game?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Your vessel, the Starship Diophantus, has become damaged in deep space. Can you use your knowledge of times tables and some lightning reflexes to survive?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

56 406 is the product of two consecutive numbers. What are these two numbers?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

Katie and Will have some balloons. Will's balloon burst at exactly the same size as Katie's at the beginning of a puff. How many puffs had Will done before his balloon burst?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

If you have only four weights, where could you place them in order to balance this equaliser?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Given the products of diagonally opposite cells - can you complete this Sudoku?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Given the products of adjacent cells, can you complete this Sudoku?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

How many different sets of numbers with at least four members can you find in the numbers in this box?

Can you explain the strategy for winning this game with any target?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Got It game for an adult and child. How can you play so that you know you will always win?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?