Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

Is there an efficient way to work out how many factors a large number has?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

Can you find any perfect numbers? Read this article to find out more...

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

Can you find different ways of creating paths using these paving slabs?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Number problems at primary level to work on with others.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Number problems at primary level that may require resilience.

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

I added together the first 'n' positive integers and found that my answer was a 3 digit number in which all the digits were the same...

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Got It game for an adult and child. How can you play so that you know you will always win?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Can you explain the strategy for winning this game with any target?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Are these statements always true, sometimes true or never true?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Can you find any two-digit numbers that satisfy all of these statements?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Find the highest power of 11 that will divide into 1000! exactly.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Follow this recipe for sieving numbers and see what interesting patterns emerge.